CREATION OF NONEQUILIBRIUM STATES
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We examine the kinetic processes which take place in a plasma under the influence of laser radia-
tion and lead to the creation of nonequilibrium states and variations of the plasma absorptivity. By solving
the Fokker-Planck equations for the bound states we find the excited atom level population distribution un-
der the action of the radiation. We calculate the stepwise ionization rate and then the kinetics of the varia-
tions of the electron and excited atom densities and the absorption coefficient. The results of the light ab-
sorption calculation are compared with the authors’ experimental data on laser pulse propagation through
a plasma. Satisfactory agreement between theory and experiment is obtained.

Experiments {1-3] have shown that plasma absorptivity depends on the radiation intensity and varies
nonmonotonically; both reduction and increase of the absorptivity have been observed. A qualitative ex-
planation of the effects was proposed in {1-3], which related them with the creation of nonequilibrium states
in the plasma subjected to intense radiation. The need to understand and describe quantitatively the action
of processes of laser radiation absorption by a low-temperature dense plasma arises in examining quite
different phenomena, for example in estimating screening by ionized vapors of solid surfaces on which the
laser ray acts, in establishing the limits of applicability of laser plasma diagnostics when the action of
light on the test object cannot be tolerated, and so on.

All this makes advisable a specialized analysis of the kinetic processes which lead to the creation of
nonequilibrium states and the change of plasma absorptivity under the influence of powerful light pulses.
This is the objective of the present paper. For definiteness all the calculations were made in application
to the conditions of [1-3], with the results of which they are compared.

1. I ight Absorption in Equilibrium Plasma and Comparison of Theory with Direct Measurement
Data. We shall present some known information on light absorption in gases in the first ionization region
(see, for example, [4]), which is necessary for the later analysis. The absorption coefficient ® is made up
of the coefficients corresponding to bound-free transitions and free-bound transitions of the electrons in
the ion field ® = ny + 5. The coefficient of true photoionization absorption equals

%= 2 Ny ‘ (1.1)

where Nk is the number of atoms per cm? in the k-th quantum state, gik is the photoeffect cross section.
The summation extends to all those atom states (realized in the plasma) from which removal of electrons
by the given quanta hv is energetically possible. The coefficient of true stopping absorption equals
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where Ng = N is the number of electrons per cm?®, T is the electron temperature, g° is a correction factor
of order unity.
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Tor a thermodynamically equilibrium gas of hydrogen atoms with hv and kT which are small in com~
parison with the ionization potential 1, the summation in (1.1) can be replaced approximately by integration,
If we also set g° = 1, we obtain the well-known Unsold-Kramers equation

° 16n2kes TN, — I+ 2 TN, I 4 hv 1.3
W= W = s R exD — 5 = 0.89.10% —=2 exp ——= (1.3)

where N, is the number of all neutral atoms per cm®. Then
Ry [ %y = exp (kv [ kT) — 1; (1.4)

the actual attenuation of the light ray is characterized by an effective coefficient which is defined by the
difference between true absorption and stimulated emission

x =%l — exp (—hv/ kT)] (1.5)

According to [5, 6] the absorption coefficient of a gas of complex atoms can be represented approxi-
mately in the form

02 *hav 1.6
K== g—;&(v)expﬁ-— (1.6)

Here g, and g, are the statistical weights of the ion and atom; £ (v) are functions characteristic of
each element; the last factor accounts for the lowering hAv of the continuous spectrum boundary in the
plasma.

In the case of inert gases the primary correction to the Unsold-Kramers equation is that of the
weighting factor Zg_'_/gﬂ =12;* at the ruby laser frequency ¥ = 4.3 - 1014 sec™); then £ =1.2-1.4. The ex-
ponential factor is usually close to one. In more exact calculations the principal terms in the sum (1.1)
should be isolated, integrating only over the remaining levels [6]; for xenon, studied in the experiments of
[1-3], the most complete calculations of this type were made in [7].

For the conditions of the [1-3] experiments with T =10,000°K = 0.86 eV, N, =6.1- 10" cm™, N, =
0.38 - 10" cm™, jonization ratio 0.06, v = 4,3 - 10! sec™!, using the Biberman-Norman equation without
account for reduction (Av = 0) we obtain ®' = 0.061 cm™ 1 (¢ = 1.35); ®{/%} = 7. According to Yankov's cal-
culation % = 0.08 cm™! and the 5d level makes the dominant contribution to the sum (1.1). Calculating w{
using (1.2) and (1.5) with n§ = 0.0059 em” ! and using the Yankov values, we obtain %i/né =13.5; n' =
n} + n = 0,086 em 2§

In the experiments of [1-3] with low light intensities, when the light does not excite the plasma and
absorption is linear, the value »' = 0.105 cm™ ! was obtained. However, it is difficult to be confident about
the good agreement between the calculations and the direct experimental data, since the plasma parameters
themselves are not known with sufficient accuracy.

2. Absorption in Nonequilibrium Plasma. T speaking of plasma nonequilibrium we will assume that
the electron density N, and the excited atom state population Ny are nonequilibrium, and we shall also have
in mind the difference between the electron T and ion (atom) T; temperatures, while retaining the assump-~
tion of Maxwellian distribution in electron (and, naturally, in ion—atom) gases. Estimates show that the
Maxwellian distribution in an electron gas is usually established rapidly, for example, in the [1~-3] experi-
mental conditions after a time of ~1072-107% sec; even high intensity light ~10°-10° MW /cm? violates
this condition very little. Under these assumptions the stopping absorption coefficients Mg, M4 are described
by the previous formulas (1.2}, (1.5) and the original Eq. (1.1) for vy naturally remains valid, but the Eq.
(1.5) for the effective coefficient ®{ now becomes invalid.

Let us find #{. On the basis of general relations (see, for example, [4]) the partial coefficient LT
associated with photoionization of the k-th atom state and induced photorecombination at this level, equals

Hp = Ry — Jipc? ] 2003, g = N5y 2.1)

*In w, this factor appears because of the multiplicity of the terms, in %, it appears when replacing Né using
the Saha equation.

T Stopping absorption during collisions of electrons with neutral atoms yields a contribution of less than 3%
to the absorption.
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Here jq erg - cm ® (sec - ster - Hz) ! is the corresponding emittance. It is proportional to the rate
of photoabsorption of electrons with energies € = hv—Ey at the k-th level (Ey is the binding energy of the
k-th level). With the aid of the detailed balancing principle [4] we can express the photoabsorption cross
section in terms of oy and NN, = Né —in terms of the population Ny of the k-th state, equilibrium with
respect to electron density and temperature

g me \' E
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where g 1s the statistical weight of the k-th level, and we obtain
, . : —h
%y = Z Ay Hyp = O Irl\/h. — N, exp TTV‘] (2.3)*

In many real cases and specifically in the [1-3] experimental conditions, as will be shown later, the
populations of the excited atom states do not differ markedly from the equilibrium states with respect to an
electron gas, although the relationship between the electron Ny and all neutral atom N, numbers may be
far from equilibrium (in accordance with the terminology of [8] there exists a "block" of excited and ionized
atom states). In these cases, to calculate ®' we can use the known data on the absorption coefficient of a
thermodynamically equilibrium gas if in the corresponding expressions we convert from N, to N, using the
Saha equation.

In the approximation in which summation over the levels is replaced by integration, on the basis of
(1.6), (1.3), (1.5) we obtain for n®' =n' the block

_ 2.42.107% (v) N2 [exp (hv [ kT) — 1] -t
o (hw)3 T2 o @4

where hv and T are expressed in electron volts.

In deriving this equation, corresponding to (1.6), we assumed that the reduction hAv of the continuous
spectrum boundary does not differ from the decrease AI of the ionization potential in the plasma.

3. Excited State Populations; Rate of Stepwise Ionization of Atoms., The absorptivity is determined
primarily by the numbers of atoms in the different excited states (population numbers Ni); therefore we
shall examine how the atoms are distributed by levels and the degree to which the distribution differs from
equilibrium with respect to the electrons. We shall do this on the basis of the Fokker-Planck equation.

In the considered case of sufficiently dense and sufficiently ionized plasma the roles of atom—atom
collisions and radiative transitions are small in comparison with the role of electron collisions. We can
further assume that only the very highest atom levels participate in ionization by electron collision and
recombination in triple collisions. We introduce into the usual Fokker-Planck equation for these conditions
[9, 10] a term describing photoionization and induced photorecombination under the action of the laser light
in accordance with the equation

(0N ] dt), = — Sxyy
where S is the quantum-flux density. We have the following eguation for the continuous distribution func-
tion f (E) of the atoms with respect to the binding energies E, which take the discrete numbers E;, and
fie B = Ni/gge

af 1 4 s gono — Y e Nyt
= —saer SB[ —rewgr| r= o
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]:D(E)g(E)(-—aé———IZT>, g (E) = £ (3.1)

where j is the flux along the energy axis, g (E) is the state density, AE; is the distance between levels, D is
the diffusion coefficient, according to [10] equal to

*1t is curious that if the populations of any of the "strong" levels are less than Ng exp (—hv /kT) and the
corresponding %y < 0 the situation is possible in which the overall effective absorption coefficient »' is
also negative, i.e., amplification takes place. We emphasize, however, that this situation cannot be ac-
counted for per se.
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where Ty, is the temperature expressed in electron volts, and In A is the Coulomb logarithm. The expres-
sion D = D°x is used for convenience in converting to the dimensionless energy variable x = E /kT.

(3.2)

In the approximation of hydrogen-like excited levels E = 1/n? (n is the principal quantum number),
gy = 20, AE = 21/n%, so that g (E) =n°/Ior

g(E)y=<g>an,  (gy=I"kI)"™ (3.3)
The photoeffect cross-section [4]
O1n = 0.79-10-17 (I / hv)® n-5 cm?®
Hence for E = hv or x =< x,, = hv/kT
0y (E) = o°z™, 0° = 0.79.10-Y (I / kT)"%2,"3

For E > hv or x > X,

o, (E)y =10

If, as is usually the case, the number of excited atoms is far less than the number of unexcited atoms
and electrons, there is rapidly established among the excited atoms a quasistationary distribution which
follows the comparatively slowly varying electron density and temperature. Therefore in (3.1) we can set
approximately 8f/8t = 0 and assume that

f(E, t) =fIE, Ne(t), T (D]
We convert, as in {8], to relative populations
Yo = Nu /[ N°, y (E)=1(EY/F (E)
where the index ° denotes the equilibrium Boltzmann quantities

: 1 B o - E
N = Nog, Ea exXp 7, fo=N, 20 OXp
Ek
Z‘-a=§1gkexpﬁ, E=1
k=1

Here Z, is the atom electron statistical sum,
We have the relation
N[Ny =f]f = (N ] N = y.*
where N¢, is the equilibrium electron density, calculated using the Saha eguation.

In the relative variables y,x the equation for the flux and Eq. (3.1) with expressions (3.2)-(3.4) sub-
stituted therein take the form

: oo Na
] = —<f>x"/2e°°%, B =D 2, (3.5)
d f a xd T rely—ple™] 0O<zLx=)
7;(96 e 'JZ“) "—‘{ "o } (2> 1) (3.6)

The parameter ¥ in (3.6) characterizes the direct influence of external radiation on the level popula-
tions; the other indirect influence is associated with heating of the electron gas, as a result of which the
electron density becomes lower than the equilibrium value.

Let us formulate the boundary conditions. The uppermost levels are very strongly coupled with the
electrons through the rapidly proceeding ionization by electron impact and absorption in triple collisions,
and are therefore in equilibrium with respect to the electrons. Consequently

Y (0) = ()xmo = .2 (8.7)
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and external radiation does not disturb this equilibrium, since
6y ~2"—>0 as z-»0

We pose the second condition at the point x = x, = E, /KT, isolating from the continuous energy scale
the most "discrete" transition between the unexcited (k = 1) and lower excited (k = 2) states. The flux
i = j(x,) at this point is
Jo = —K yNiNe + Ky NoNe = —K N °Ne (4 — §2) = —~KpuNolVe (1 — yg) (3.8)
where Ky, is the rate constant for atom excitation by electron impact; here we have used the detailed

balancing principle and the fact that there are far more unexcited than excited atoms, so that N; = Nj = Ng»
yy ® 1. The rate constant Ky, equals [4]

Ky, = (8T | um)¥sC* (E* + 2kT) exp

—= (3.9)

k

where E* = I—E, is the excitation energy, C* is the coefficient in the threshold dependence of the excitation
cross section on the electron energy €

01y () = C* (e — E¥)

We substitute j from (3.5) into (3.8) and find the boundary condition

7 ¢ dyjdz ) _ KuN.N, __

The solution of (3.6) with the boundary conditions (3.7), (3.10) for given Ng, T, Ny, S determines not
3

only the atom level distribution y{x) but also the rate of change of the number of electrons per cm”’, since
by virtue of quasistationarity of the distribution

dNn, dN : -

= — o = — o~ KuNaNe (1 — ) (3.11)

Let us examine the important practical case in which external radiation is not very stong or is en-
tirely absent: 7 = 0, but the electron density is nonequilibrium for some reason or other. For ¥ = 0 (3.6)
is easily solved analytically, since j = const [11]. Substituting the integral of (3.6) into (3.11), we find

dN, KN N, (1—y2)
187 (=)

(J (1) =0.21, J (2) = 0.61, J (3) = 0.93, J (c0) = 1.33)

, J(x)= S:ca/’e_x dz
b (3.12)

Equation (3.12) is similar to the known solutions of [10, 11]. In the limiting case ygo >> 1, K4y —, Xy =,
which corresponds to the problem formulation in [10], (3.12) yields the expression obtained in [10] for the
recombination rate.

For ye < 1, when the kinetic process proceeds in the jonization direction, (3.12) yields the resultant
rate of stepwise ionization.

If 5 << 1, we see from comparison of (3.12) and (3.11) that y, = yze (and in general y(x) =~ yé), i.e., the
excited atoms are in equilibrium with the electrons. In this case

aN N2
= KyuNoNe (1 — 3. = KulNoN. (1 — N> (3.13)

Equation (3.13) automatically ensures approach of dNg/dt to zero as the electron density approaches
the equilibrium value.

The condition of {j) << 1 for the existence of the block 8 = Ky3N,;Ng is physically understandably clear
since the parameter 8 characterizes the binding ratio of the excited atoms with the unexcited (through the
excitation rate) and with the electrons (through the diffusion coefficient D, which is proportional to the
quantity (j)). The quantity g equals approximately (if we set Z, ~ gy exp (I/kT))

. » B*-2kT kT ... E
B~ 4.6-108C" —go———T.ig; eXp 47~ (3.14)

It is independent of the electron and atom densities and is minimal for kT ~ E,/3.5, essentially for
T ~1 eV, and B, ~ 1072
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Figure 1 shows examples of the numerical solution of (3.6) for

0.020, T ——

ft”% yo = 0.1 and g = 0.01 (actually the numerical calculation was made only
0015 = [r=0! in the region 0 < x < xp, since for x, < x < X, the equation can be solved
// 7= analytically, and since y and dy/dx are continuous in xy). We shall
001 ——T— present an example of the numerical values of the parameters. Let
z} N =0.38 - 1018 ¢m™3, as in the initial plasma of the [1-3] experiments
0003 5 7 2 3 g = 6.1 - 1018 cm™3 ;mxenonI*lZleV E* =8.4 eV, E, = 3.7 eV, we

Fig. 1 set C* =3 - 10! cm?/eV (the choice of this quantity will be discussed
later), hw = 1,78 eV (ruby). Let S =3.3 - 107 phot/cm? - sec, which
corresponds to a light intensity of 1000 MW /ecm? and T = 1.2 eV (initial plasma temperature T = 10,000°
K =0.86 eV). Setting In A = 0.22 in accordance with {11], we find g = 0,007, ¥ = 0.28,

We see from Fig. 1 that in the high excitation region, where photoionization takes place, the popula-
tions do not differ markedly from the equilibrium populations with respect to electrons. We note that in the
case of very strong radiation in a large part of the photoionization region 0< x< xp there is established the
distribution y = y& exp (—hv/kT) corresponding to approximate compensation of photoionization and induced
photorecombination.

4, Kinetics of Heating, Ionization, and Light Absorption. We shall formulate the system of equations
describing the changes of state and absorptivity of the plasma under the action of intense radiation. We
shall neglect hydrodynamic effects and also diffusion and thermal conduction, since they cannot show up
during the short time of the giant laser pulse, We assume that the number of excited atoms is small in
comparison with the numbers of unexcited atoms and electrons, so that the approximation of quasista-
tionarity of the excited states, examined in the previous section, is applicable; in this case we can also
neglect the excitation energy in the gas in comparison with the ionization energy. The energy of the ab-
sorbed radiation transitions into energy of the electron gas, where each free electron has the thermal
energy %/, kT and the potential energy I. Therefore

o No(Jy kT + I) = hvw'S — 3N (T — Ty) [ 7

where Tg; = 3.15 - 10*‘AT:Z,2 / Ng In A is the characteristic time for energy exchange between electrons and
ions (A is atomic weight, In A is the corresponding Coulomb logarithm); the comparatively small losses to
thermal radiation are neglected. Thus the equations for the temperatures of the electrons and heavy par-
ticles have the form

3 . dr , 3 . dN, 3 T—T,

Tk]\le-—‘—it—z hV%S-—(‘[—*—TkT)T_TkNE :Fei L] (4.1)
T T,

SNy G- = 2 kN, 2t Ny=N,+ N, = const (4.2)

It is worthy of note that even for very high light intensities, when ionization by the external radiation
may be stronger than the ionization by electron impacts, the creation of one free electron still reduces the
energy content of the electron gas by I + 3/,hw, although it would appear that the energy is derived at the
expense of the external source. This is explained by the fact that splitting-out of a single excited atom
during photoionization is immediately (by virtue of quasistationarity) compensated by excitation of an un~
excited atom, which takes place at the expense of the electron gas energy.

The electron number rate of change dN,/dt is expressed by the general equation (3.11), which calls for
solution of the Fokker-Planck equation. We shall formulate the expression for the absorptivity in nonequi-
librium conditions. On the basis of (2.3), replacing summation over the levels by integration and, in addi-
tion, using the analogous definition of the effective photoelectric absorptivity »®', corresponding to equi-
librium of excited atoms with electrons, we obtain

Xy
Ly

, e x| ¥ —x hv
W®, =— e — —_
1 %y xy S e [ yez € :l d;(', Ty &T (4'3)

When more exact galculatlon of the absorption is necessary it may be advisable to substitute into this
equation the value of “1 calculated with separation of the strong levels from the integral. The overall co-
efficient ' = %y + w, with integration over the levels n{' /%, = e¥—1, »y = n¢ e XV, 50 that
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where »€' is given by (2.4). The use of this equation involves quite tedious calculations and it is presented
only for information.

For the calculations made with the specific objective of explaining the experimental results of [1-3],
it was sufficient to use the block-of-states approximation and set ®' = ®€" and also replace "exact" Eq.
(3.11) for the ionization rate by the approximate Eq. (3.13).

We thus obtain a simplified system of three ordinary first-order differential equations for the time
functions T, Ty, Ng— (4.1), (4.2), (3.13), (2.4) plus the Saha equation, whose solution permits finding ®' (t),
i.e., the plasma absorptivity.

The calculation results depend markedly on the coefficient C* in (3.9) for the excitation rate constant,
which defines the ionization rate (3.13). Unfortunately, there are no experimental data in the literature on
C* for xenon, with which the experiments of [1-3] were conducted (the data are very incomplete for the
other gases as well, since in certain cases the data relate to the overall excitation cross section at many
levels, and in other cases to the excitation of definite spectral lines). It is known that for argon C* =
7 . 10718 ¢m?/eV, while apparently for neon C* = 1.5 - 10718 ¢cm?/eV, and for helium C* = 4.6 - 10 18
cm?/eV [4].

The calculation results presented below were obtained with the value C* =3 - 10718 cm? /evV. We
note that the larger C*, the lower the light intensities at which "clarification" and subsequent increase of
the absorptivity take place.

1t is interesting tosee towhat degree the solution of the nonstationary problem in which explicit account
is made for the kinetics of the excitation of the different atom levels differs from the solution of the prob-
lem in the approximation of quasistationarity of the populations or the existence of a block. (We note that
in certain cases the conditions of quasistationarity and smallness of the numbers and energy of the ex-
cited atoms may be completely invalid or questionable.) The complete system of kinetic equations for T,
T, Ne and the ensemble of population numbers Ny is obviously quite cumbersome. Therefore it is ad-
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visable to simplify this system if our objective is to clarify the question of the relationship between the
nonstationary and quasistationary cases, This can be done by combining approximately all the excited
states into two groups with binding energies E, and E; and population numbers N, and N;. The index 1, as
before, is assigned to the ground state, Assuming that only the atoms of the more highly excited third
"state" are ionized by quanta and by electron impact, we write the kinetic equations
dN1
i
'%\;2— = K12N Ny — Ky NNy — Ko3NeN, + K3y NyNg
— = KoV Ny — K3, N, Ny — K3 NoNy + Ky N — 561> (N — Ng° exp (— v /(£T)
N, + N; + Ny + Ng 4 Ny = const
The discrete transition rate constants Kjy, Kpy, Kgs, K3y and also the ionization and recombination
rate constants Kje, Keg are related as follows by the detailed balancing principle:

= == K1, NNy + Ky NNy

(4.5)

Ky N g — By .

Ku Ny _—g_l—exp &T (‘EIZ_‘~ EI_EZ)
Koy Ng® &3 — Egg a .
T = W = g P 7 (Ezs = E, — Ey)

(4.6)

Ky N o (2amkrNh g,
X _( 2 ) P57
It is natural to select the average photoionization cross section (oy) so that in the equilibrium case
we obtain the known true photoionization absorptivity {oy) N3 =wnj. The energy of the absorbed radiation
transitions to energy of the electrons and excited atoms. In place of (4.1) we obtain the new equation

3 dar . 3 av dNe o dNs 3, T—1T, 4.7
—z—kNe—gt«:hws—@JerT) 7~ B g — B g = N (4.7)
Equation (4.2) remains in force. The effective coefficient ®' equals
] — h ,
® = (51> (Ns—NsanP kTV > + %2 (4.8)

The rate constant Ky, is found from (3.9). The rate constants K,; and Kj, can be selected approxi-
mately on the basis of the known values for hydrogen-like atoms [4]; the statistical weights g, and g; of the
grouped levels can be chosen by examining the atom level diagram and taking into account cutoff of the
upper states in the plasma., Calculations of the nonstationary system (4.7), (4.2), (4.5), (4.8) with different
values of the constants showed that the block-of-states approximation (and, consequently, the quasistationary
approximation) is satisfied with adequate precision.

Figure 2 shows the results of calculations of the kinetics and absorption of the laser pulse, The pulse
was approximated for ease of calculation by the sinusoidal function S (t) = S, sin (t/7) with T = 50 nsec. In
the figures S = S8, where S; = 4.9 - 10?% phot/cm? - sec in the peak flux corresponding to breakdown of
cold xenon of the same density as the plasma.

Figure 2 shows the time variation of the electron density N, and the excited atom densities N, and
N; in the second and third groups, the electron temperature, and the light absorptivity. Also shown are the
densities of all the atoms. The ion temperature does not differ markedly from the electron temperature
(somewhat lower than the latter). Curves are shown for radiation intensities amounting to 6 =107¢, 1073,
3 +1073, and 107% of the breakdown value S.

Figure 3 shows the form of the transmitted pulse for different incident radiation intensities; this
value js compared with the sinusoidal form of the incident light.

Figure 4 shows the calculated ratio of the transmitted and incident light powers for different values
of the incident power (dashed curve). Also shown are the experimental data (solid curve, drawn through
the experimental points). The scale of the absolute values of the intensity J in MW/cm? is plotted with ac-
count for the slight conicity of the light beam in the plasma [1] and corresponds to the average values of

the light intensity in the plasma (average along the conical channel). We see that the calculated values
agree satisfactorily with the experimental data.
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